"Bitte anschnallen. Wir durchfliegen gerade ein Gebiet mit starken Turbulenzen." Was so manchen Fluggast in Schrecken versetzen würde, erfreute im vergangenen Monat Atmosphären- und Klimaforscher aus Deutschland, Brasilien und Israel. Im Rahmen einer groß angelegten Expedition erkundeten mehr als 60 Wissenschaftler hoch aufsteigende Wolkentürme über dem Amazonas-Regenwald mit Hilfe des Forschungsflugzeugs HALO.

Ziel der ACRIDICON-CHUVA-Messkampagne war es herauszufinden, wie Gase und Aerosolpartikel, Wolkentropfen und -eiskristalle, Wind und Sonnenstrahlung in der Atmosphäre wechselwirken, und so die Entstehung und Eigenschaften von Wolken und Niederschlag sowie deren Auswirkung auf das Klima beeinflussen. Das Projekt wird unter anderem von Manfred Wendisch vom Institut für Meteorologie der Universität Leipzig koordiniert.

Um das zu untersuchen, flogen die Forscher vom brasilianischen Manaus aus in 14 Messflügen von etwa sieben Stunden Dauer über dem Regenwald hoch in die Atmosphäre. Dabei flog das Flugzeug oft direkt in sogenannte konvektive Wolken ein, wie Meteorologen aufsteigende Regen- und Gewitterwolken bezeichnen. Mit an Bord hatten die Wissenschaftler eine Kombination neuartiger und leistungsfähiger Messinstrumente, um die Zusammensetzung und die physikalisch-chemischen Eigenschaften von Luft und Wolken zu bestimmen.

Besondere Aufmerksamkeit galt den Unterschieden zwischen Wolken in reiner Luft über dem Regenwald und in verschmutzter Luft über der Millionenstadt Manaus und Brandrodungsgebieten.

“Wir wollen unter anderem verstehen, welchen Einfluss die Luftverschmutzung auf die Bildung von Wolken hat”, sagt Meinrat O. Andreae vom Max-Planck-Institut für Chemie aus Mainz. “Wenn große Waldgebiete abgebrannt werden, entstehen riesige Mengen an Rauchpartikeln, die hoch in die Atmosphäre steigen und dort die Wolkenbildung beeinflussen.”

“Verschmutzte Wolken enthalten um ein Vielfaches mehr, aber dafür kleinere Wassertröpfchen als saubere Wolken”, erläutert Manfred Wendisch vom Institut für Meteorologie der Universität Leipzig die ersten Ergebnisse der Messkampagne. Verschmutzte Wolken bilden daher weniger schnell Regen und erscheinen heller, da kleinere Tröpfchen mehr Sonnenlicht reflektieren als große.

“Auf den ACRIDICON-CHUVA-Flügen mit HALO konnten wir erstmals die chemische Zusammensetzung und mikrophysikalischen Eigenschaften der Wolkenteilchen, Aerosolpartikel und Spurengase in hochreichenden konvektiven Wolken simultan messen und umfassend charakterisieren”, sagt Ulrich Pöschl vom Max-Planck-Institut für Chemie, der das Forschungsprojekt gemeinsam mit Meinrat Andreae, Manfred Wendisch und Luiz Machado vom brasilianischen Forschungsinstitut INPE koordiniert. “Dadurch wird es möglich, den Prozess der Wolkenentstehung genauer zu erfassen und die Auswirkungen von Luftverschmutzung auf Wetter und Klima besser zu verstehen und vorherzusagen.”

Für quantitative Aussagen, wie sich die beobachteten Effekte auf das Klima im Amazonas-Regenwald und weltweit auswirken, ist es jedoch noch zu früh, da die Forscher die riesigen Datenmengen erst vollständig analysieren und auswerten müssen.Neben der Begeisterung für die einzigartigen wissenschaftlichen Daten, die das Forschungsflugzeug HALO auf seinem fünfwöchigen Auslandseinsatz sammelte, freuten sich alle Beteiligten darüber, dass die Messkampagne nach jahrelangen Vorbereitungen trotz schwieriger logistischer Bedingungen erfolgreich durchgeführt werden konnte, was ohne die enge Zusammenarbeit mit den brasilianischen Partnern nicht möglich gewesen wäre.

Forschungsflüge nahe großer Gewitterzellen, die in größere Wolkenformationen hineinführen, sind für die Testpiloten des Deutschen Zentrums für Luft- und Raumfahrt (DLR), dem Betreiber von HALO, ein nicht ganz alltägliches Handwerk. “Die Messflüge waren die bisher komplexesten Flugabläufe für HALO”, sagt DLR-Testpilot Steffen Gemsa. “Fliegerisch besonders anspruchsvoll waren für uns die wiederholten Durchflüge von Quellwolken und von Ausflussgebieten hochreichender tropischer Gewitterwolken.”

Die Piloten flogen über dem brasilianischen Regenwald fünf verschiedene wissenschaftliche Basisflugmuster in niedrigen Flughöhen. Zudem stiegen sie auch in extreme Flughöhen von fast 15 Kilometer auf. Bei diesen Flügen überwand das Flugzeug regelmäßig Temperaturunterschiede von weit über 100 Grad Celsius. Während es am Boden oft über 35 Grad Celsius heiß wurde, herrschen in der oberen Troposphäre etwa minus 65 Grad Celsius. Aufgrund der herausfordernden Temperaturen und Turbulenzen war zwar viel Wartungsarbeit an Flugzeug und Messinstrumenten zu bewältigen, es gab aber keine größeren technischen Ausfälle. Und auch alle mitfliegenden Wissenschaftler landeten wieder wohlbehalten auf der Erde.

Über die ACRIDICON-CHUVA-Messkampagne: www.uni-leipzig.de/~meteo/acridicon-chuva/

www.uni-leipzig.de/~meteo

www.mpic.de

Quelle: Uni Leipzig, Carsten Heckmann

So können Sie die Berichterstattung der Leipziger Zeitung unterstützen:

Redaktion über einen freien Förderbetrag senden.
oder

Keine Kommentare bisher

Schreiben Sie einen Kommentar